Table of Knot Mosaics - Crossing number 10 or less


The mosaics in this table are color coded with the following key (t = tile number, tm = minimal mosaic tile number):

  • Mosaic number 5:     : t = 17;
  • Mosaic number 6:     : t = 22;     : t = 24;     : t = 27;     : tm = 32*;
  • Mosaic number 7:     : t = 27;     : t = 29;     : t = 31

* Note: Prime knots that require 32 non-blank tiles to fit on a 6-mosaic (i.e. tm = 32) may have tile number less than 32 that can only be achieved on a 7-mosaic. All given mosaics have mosaic number realized. Click "more" to see mosaics with tile number or crossing number realized.


Click mosaic for larger view.


Image

01

Image

31

Image
41
Image
51
Image
52
Image
61 (more)
Image
62
Image
63
Image
71
Image
72
Image
73  (more)
Image
74
Image
75
Image
76
Image
77
Image
81  (more)
Image
82
Image
83  (more)
Image
84
Image
85
Image
86  (more)
Image
87  (more)
Image
88  (more)
Image
89  (more)
Image
810
Image
811
Image
812
Image
813
Image
814
Image
815
Image
816
Image
817
Image
818
Image
819
Image
820
Image
821
Image
91
Image
92
Image
93  (more)
Image
94  (more)
Image
95
Image
96
Image
97 (more)
Image
98
Image
99 (more)
Image
910 (more)
Image
911
Image
912 (more)
Image
913 (more)
Image
914
Image
915 (more)
Image
916 (more)
Image
917
Image
918
Image
919 (more)
Image
920
Image
921 (more)
Image
922
Image
923
Image
924 (more)
Image
925
Image
926 (more)
Image
927
Image
928
Image
929 (more)
Image
930
Image
931
Image
932
Image
933
Image
934
Image
935 (more)
Image
936
Image
937 (more)
Image
938
Image
939
Image
940
Image
941
Image
942
Image
943
Image
944
Image
945
Image
946 (more)
Image
947
Image
948 (more)
Image
949
Image
101 (more)
Image
102
Image
103 (more)
Image
104
Image
105 (more)
Image
106 (more)
Image
107 (more)
Image
108
Image
109 (more)
Image
1010
Image
1011 (more)
Image
1012 (more)
Image
1013 (more)
Image
1014 (more)
Image
1015 (more)
Image
1016 (more)
Image
1017 (more)
Image
1018 (more)
Image
1019
Image
1020 (more)
Image
1021 (more)
Image
1022 (more)
Image
1023
Image
1024 (more)
Image
1025
Image
1026
Image
1027
Image
1028
Image
1029
Image
1030
Image
1031 (more)
Image
1032
Image
1033 (more)
Image
1034 (more)
Image
1035 (more)
Image
1036 (more)
Image
1037 (more)
Image
1038 (more)
Image
1039 (more)
Image
1040
Image
1041
Image
1042
Image
1043
1044
1045
1046
1047
1048 (more)
1049
1050 (more)
1051 (more)
1052
1053
1054
1055
1056 (more)
1057
1058
1059
1060
1061 (more)
1062 (more)
1063 (more)
1064 (more)
1065 (more)
1066
1067 (more)
1068 (more)
1069
1070 (more)
1071
1072 (more)
1073
1074 (more)
1075
1076 (more)
1077 (more)
1078 (more)
1079 (more)
1080
1081
1082
1083
1084 (more)
1085
1086
1087
1088
1089
1090 (more)
1091 (more)
1092 (more)
1093 (more)
1094
1095
1096
1097
1098
1099
10100
10101
10102
10103 (more)
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114 (more)
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139 (more)
10140 (more)
10141
10142 (more)
10143
10144 (more)
10145
10146
10147
10148
10149
10150
10151
10152 (more)
10153 (more)
10154
10155
10156
10157
10158 (more)
10159
10160
10161*
10162*
10163* (more)
10164*
10165*
*These knots are listed as 10162‑10166 in Rolfsen due to the Perko Pair.        

[Back to Top]


References:

Heap, A.; Knowles, D. Tile Number and Space-Efficient Knot Mosaics; J. Knot Theory Ramif. 2018, 27.
Heap, A.; Knowles, D. Space-Efficient Knot Mosaics for Prime Knots with Mosaic Number 6; Involve 2019, 12.
Heap, A.; LaCourt, N. Space-Efficient Prime Knot 7-Mosaics; Symmetry 2020, 12.
Heap, A.; Baldwin, D.; Canning, J.; Vinal, G. Tabulating Knot Mosaics: Crossing Number 10 or Less; in preparation.
Kuriya, T.; Shehab, O. The Lomonaco–Kauffman Conjecture; J. Knot Theory Ramif. 2014, 23.
Lee, H.; Ludwig, L.; Paat, J.; Peiffer, A. Knot Mosaic Tabulation; Involve 2018, 11.
Lomonaco, S.J.; Kauffman, L.H. Quantum Knots and Mosaics; Quantum Inf. Process. 2008, 7, 85–115.
Ludwig, L.; Evans, E. An Infinite Family of Knots Whose Mosaic Number Is Realized in Non-reduce Projections; J. Knot Theory Ramif. 2013, 22.
Rolfsen, D. Knots and Links; Publish or Perish Press: Berkeley, CA, USA, 1976.